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On the modulation instability of nonlinear 
Schrodinger erpations 

J Mertsching 
Zentralmsfmt fur Elektronenphysik. H a ~ ~ ~ g l e i p l a t i  5-7.0.1086 Berlin. Germany 

Received 13 July 1990, ~n final form 27 February 1991 

Abslract. According lo the modulation :nrtability of the  nonlinear m d  denvatwe nonl!near 
Schradinger eq. %nr, a wave profile may decay info solitons The lirtriburion function 
and the power spectrum of the solitom are d e u l a t e d  lrom con~ervation laws 

1. Introduction 

The nonlinear Schrodinger equation 

Iq,+q,,+2Iql2q = o  (1) 

exhibits a modulation instability (Benjamin and Feir 1967), i.e. small perturbations of 
a wave exponentially grow in the course of time. A numerical solution of the nonlinear 

turbation of a constant profile leads to the formation of solitons. The calculated 
spectrum qualitatively agrees with a simple analytic approximation assuming equal- 
amplitude, randomly spaced, zero-speed non-overlapping solitons. This approximation, 
however, fulfills only the first of an infinite number of conservation laws. Recently, 2 

distribution function of the amplitudes and velocities of solitons has been calculated 
which satisfies all polynomial conservation laws (Dawson and FontAn 1989). After a 
short rederivation nf this distribution function in section 2, we calculate the power 
spectrum of randomly spaced non-overlapping solitons from the distribution function 
and find good agreement with the numerical calculations (Shen and Nicholson 1987). 
except for a missing smooth part with small wavenumbers. 

Guide3 by this success, in section 3 we extend these calculations to the derivative 
nonlinear Schrodinger equation 

SchrEdinger eqc2rinn (S.h.en znd Nicholson !987) shows !hat 1 smz!! stoch2scic per- 

ig , tq , ,  'i(1*/5& = 0 (2) 

which also exhibits a modulation instability (Mio et a/ 1976, MjBlhus and Wyiler 1986, 
Mann 1988) under certain conditions, whereby solitons arise from a weakly disturbed 
wave profile. A short recalculation of the distribution function shows that DewSon 
2nd Fontin's (1989) result is valid only for normal solitons, whereas an addkional 
term arises for anomalous solitons. The distributlon function is used to calculate the 
....I~IP- C-Prt*nnm "F thn mlitnnr 7%- nnt.rar Qnnrtnlm .mnirhoe f-r 7-m wivmrimher p"..-. 'p.,I.'Y... ". ...- .... YV..". "p-".."... ."...".."....".~I.~ 

and is somewhat broader than a typical one-soliton spectrum. 
Finally, the results are summarized and discussed in section 4. 

0305-4470/91/12?715+08%03 50 0 1991 IOP Publishing Ltd 2115 
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2. Nonlinear Schradinger equation 

The nonlinear Schrodinger equation is related to the spectral probiem (Zakharov and 
Shabat 1971) 

qI. = -ihq i qx xY= -q*q+iAX. (3) 

(;) is the two-component spectral function, and A the spectral parameter. Eliminating 
x yields 

(4) q ~ - ( q r + i A p ) - = - h 2 ~ - ~ ~ ~ Z q .  % 
4 

With the ansatz 

9 =e~'*x+"r' 
we obtain 

I f+(x=-m)=Othen  $ ( ~ = m ) - = J ? ~ & ( x ) d x  isindependent oftime forall &When 
this function is written as a series in powers of {l/ZiA), the coefftcients are the 
polynomial conserved quantities of the nonlinear Schrodinger equarion (Zakharor and 
Shabat 1971). 

Let ES calculate +(a) for the snliion soktion 

oT (1) and the wave profile 

o = k2-2qi (8) 

which is unstable for a small perturbation with a wavenumber K iZq,, when qs - 
exp(~J4q:-n' I ) .  Solving (6) for the soliton (7) we obtain 

= ~~ ezlLr--ll 

h+v/4- ( iu / l ) tanh  ut  
A+ V/4+lUli 445) =In 

+(m)=ln--- -Zitan-' 
A+v/4-iu/2 U 

A+v/4+iu/2 2(A+ 014)' 

For the wave profi!e (8) we have from (6)  

The plane wave is assumed to evolve into an ensemble of solitons with the distribution 
function p ( u ,  U), where p(u, U) du do is the numbzr of solitons with amplitude U m 
an interval du, and velocity II in an interval dv. The conserved function for the solitons 
is additive and must be equal to the conserved functior: for the initial plane wave. This 
condition leads to an integral equation for determining the distribution function p(u, v )  
of the solitons, i.e. 

4(a ) ;A;u3  ~ ) ~ ( u , ~ ; 4 u , k ! d u d u = A ( A \ ; ¶ u , k ) L  (12) J 
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where .$(a, A; U, U )  and .$AA; qo, k )  are p e n  by ( IO)  and ( l l ) ,  and L IS the length 
of some large interval containing the iniiral plane wave. Equation (12) is solved by 

(Dawson dnd Fontrin 1989) All solitons emerging from the wave profile (8) !lave 
amplitudes U <2qo and a unique velocity U = 2k. The total number af solitons becomes 

and the total width of all solitons per unit length is 

I p(u, u )  du du = f 
L u  

Thus only half the interval is crowded with solitons which only weakly overlap. 
The power spectrum of the solitons derives from the Fourier transform of a soliton 

(7):  

=- 
Lcosh[a(K -u/2)/2u] 

For randomly spaced, non-overlapping solitons with the distribution function (13) the 
power spectrum becomes 

P ( K ) =  $ 2 ( K ;  u,u)p(u,u)dudu (18) 

(19) 
sin ‘p 

I 
=yju”” cosh2[a(K - k)/4qo sin ‘p] dv. 

Figure 1 shows the power spectrum (19) together with the results P ( K )  = N?(K)  
from two simple one-soliton group approximations. In the approximation of Shen and 
Nicholson (1987), the number of solitons is assumed to he N = K L / ~ ,  where K = & qo 
is the wavenumber with maximum growth rate, and the common amplitude U = rqd&  
and velocity u=2k  of all solitons are determined from the first two polynomial 

three conservation laws which yield N = q0L/2fi solitons with amplitude U =d qn 
and velocity U =2k This approximation scarcely differs from (19) for large wavenum- 
bers, hut yields a smaller power for small wave numbers. The power spectrum (19) 
also agrees well with the numerical solution of the nonlinear Schrodinger equation 
(Shen and Nicholson 1987) for a constant profile (k  =0) and large K ,  but still comes 
out too small for small K. Thus we conclude that a constant profile approximately 
decays inio diiiereni soiiions pius some smooth background with siiiaii w ~ < e f i ~ i b e i ~  
K. 

co!!sPr?a!?o.I !..us. .4 bPt!er nn.-so!i!.n grocp approxima!ion is ohtained from the first 
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Figure 1. Power Spectrum of solitons of the nonlinear Schrodinger equation as calculated 
from the Shen-Nicholson appromnatlon ( 1, an improved one-soliton group approYi- 
mation (...-), and from the soliton dirrnbuiion function I-) 

3. Derivative oonlioear Schrodinger equation 

The derivative nonlinear Schrodinger equation (2) is related to the spectral problem 
(Kaup and Newell 1978) 

q , = - i A q + + f i x  x.=*q*,i;iq+ihx (20) 

which is similar to the Zakharov-Shahat spectral problem (3) for the nonlinear 
Schrodicger equation (1). Thus the distribution function of solitons emerging from a 
wave profile and the power spectrum of solitons can he calculated along the same 
lines as described in the previous section. Elirmnation of x in (20) yields 

Solving (22) for the soliton solotion of (2) (MjBlhus and Wyller 1986, Mann 1988) 

)] (23) 
1 

1 3  tan-'(-ranh 2bE)+tlS+-(u'*2u)'r 
2 16 

U *2u 
b = - v G  W=- 

8 u'*4v 
5 = x - u r  
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yields 

(v/4)'+b2+A{u/4+i[b(l- W)sinh465riu'/8]/[(1- W)cosh4be+ U']} 
( u / 4 ) ' +  b'+ A (  u / 4 - i b )  

+(f) = In 

(25)  
The conserved function of A becomes 

A+u/4-ib u/4+ib 
h+u/4+ib  ulrl-ib 

+(m) =In 

where ~ (u )=f [ I+s ign fu ) l  is the unit step function. For the wave profile 

o = k ' F k q i  (27) 
= qe e ! l ~ ~ - w ! l  

we obtain 

& =i[ (A+:) -sign( A + ! )  d-1 
The wave profile decays into solitons only if * k >  qZl2, when small perturbations with 
wavenumbers ~ c - 9 ~  grow as q ~ - e x p [ ~ J ( * 2 k - q ~ ) q ~ - ~ ~ f ] .  In this case 
the integral equation (12) for the soliton distr~bution function is solved b:: 

where 

k 
d F u ) p I ( u ) d u = * - - Q > 0  (31) 

If *u,>O the last term in (29) vanishes, and normal solitons with limited amplitudes 
( 6  < Q) and a unique velocity U, occur. In this case the distribution function has been 
derived by Dawson and Fontin (1989) by transforming the Kaup-Newell rpectral 
problem (20) to the Zakharov-Shabar problem (3) However, this transformation does 
not adequately take into account the first polynomial conserved quantity 

I 2 

This quantity directly denves from (22) in the limit h+m, whereas in the Zakharov- 
Shabat case (6) we have &((=m, A+m)=O. Since (32) is a positive continuous 
function of U, a step-function term oc.t;lrs in (26) which gives rise to the second term 
in the distribution function (29). Thus for * u , < O  not only anomalous solitons with 
the velocity U, are formed, hut also some solitons with u ' = ~ 4 u  (b=O) ,  for which 
according to (26) all polynomial conserved quantities vanish except the first one. These 
solitons are called algebraic since (23) leads to 
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in the limit h-0  Algebraic solitons, however, have infinite wldth and may decay into 
radiation under small perturbations (Kaup and Newell 1978). Therefore a wave profile 
with *uocrO cannot evolve into an ensemble of stable solitons with only small overlap. 

Let us confine ourselves to the case *u,>O, when the soliton distribution (29) is 

d b  L b  
?r 9- d u  S ( u -  U") -. p ( u ,  U)=-- (34) 

The total number of solitons is 

and the Wtal width of all solitons per unit length becomes 

as in (15) 
The Fourier transform (16) of a soliton (23) is 

with 

The power spectrum (18) is calculated from the Fourier transferm (37) and the 
distribution function (34) of the solitons. Using (24) to write 

(39) 
,,=J8b!!@d W ( u ) -  U1 

01 ' - v , + m  

in terms ot U, =fv/4b we obtain the power spectrum 

where u,(pp!=.tv0/4Qsin9. 
This result may be compared with a simple one-soliton group approximation 

P ( K )  = NS2(K) ,  for which the first three conservation laws yield N = Q'L/46 solitons 
with a common amplitude U (39) and velocity U = U, (30), where b must be determined 
from 

(41) 

A11 soliton spectra vanish for jK/ + m and K + 0 since 

according to (2) and (231, and have maxima for finite IKI. 

(30). The one-soliton group approximation yields b =  ?rqi//8 from (41), i.e. N =  qiL/2 
Let as con.,;&: +k = q', Q 2nd a. = 0 according 
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solitons with amplitude U = & qa and velocity U = 0. Then the power spectrum (40) 
becomes 

for the soliton distribution, and 

in the one-soliton approximation As shown in figure 2, both spectra are rather similar. 
The integration over the soliton distribution m (431, however, leads to a somewhat 
shifted and broadened maximum as compared with the one-soliton approximation (44). 

Figure 2. Power spectrum of zero-speed sal~tons ( * L = q : )  of the derivative nonhear 
Schr6dmgei equation as calculated from a one-solmn group approliimation (----I, and 
from the ~oliton distribution function I-) 

4. Summary 

We have studied the modulation instability of a wave profile for the nonlinear and 
derivative nonlinear Schrodinger equations. Strictly speaking, the evolution of a wave 
profile depends on the detailed shape of the initial small perturbation. We discuss 
here, however, a typical evolution of the wave profile into an ensemble of stable solitons 
under small stochastic perturbations. In this case the distribution function of the 
solitons have been determined from the polynomial conserved quantities by Dawson 
and Fontin (1989). We confirm their result except for 4;/2 < +k < 4: in the derivative 
nonlinear Schrodinger case, when the lirst conservation law can be satisfied only with 
additional algebraic solitons. 
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The power spectrum of the solitons can he calculated from their distnhution 
function, provided the solitans are randomly distributed and do not overlap. This 
condition i s  only approximately met, since half of the available space is occupied by 
the solitons For the nonlinear Schrodinger equation the spectrum qualitatively agrees 
witha numerical solution ofrhis equation (Shen and Nicholson 1987). For the derivative 
nonlinear Schrodinger equation, the distribution function is compatible with numerical 
solukons involving only few solitons, hut extending the numerical calculations to a 
large number of solitons would appear to he difficult (Dawson and Fontin 1988,1989). 

The power spectrum of the derivative nonlinear Schrodinger equation exhibits a 
aaximum for finite K Such maximum is observed in the power spectrum of the 
Alfvhic turbulence upstream of the earth's bow shock. which is related to the denvative 
nonlinear Schrodinger equation (Mobius er a1 1987, Mann 1988, 1990) 
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