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On the modulation instability of nonlinear
Schrodinger equations

J Mertsching
Zentrahinstitut fur Elektronenphysik, Hausvogteipiatz 5-7, 0-1086 Berlin, Germany

Recetved 13 July 1990, in firal form 27 February 1991

Abstract. According to the modulation instablity of the nonlinear and derivative nonlinear
Schrodmger eq. tions, a2 wave profile may decay into selitons The -istibution function
and the power spectrum of the solitons are calculated lrom conservation laws

1. Introduction

The nonlinear Schrodinger equation
19+ g +2]gl’g =0 (1)

exhibits a modulation instability ( Benjamin and Feir 1967), 1.e. small perturbations of
a wave exponentially grow in the course of time. A numerical solution of the nonhinear
Schridinger equation (Shen and Nicholson 1987) shows that a small stochastic per-
turbation of a constant profile feads to the formation of solitons. The calculated
spectrum qualitatively agrees with a simple analytic approximation assuming equal-
amplitude, randomly spaced, zero-speed non-overlapping solitons. This approximation,
however, fulfills only the first of an infinite number of conservation laws. Recently, a
distribution function of the amplitudes and velocities of solitons has been calculated
which satisfies all polynomial conservation laws (Dawson and Fontan 1989). After a
short rederivation of this distribution functicn in section 2, we calculate the power
spectrum of randomly spaced nor-overlapping solitons from the distribution function
and find good agreement with the numerical calculations (Shen and Nicholson 1987),
except for a missing smooth part with smali wavenumbers.
Guide?d by this success, 1n section 3 we extend these calculations to the derivative
nonlinear Schrddinger equation
iq, + g =i{lq! (2)
which also exhibits 2 modulation instability (Mio et al 1976, Mjglhus and Wyller 1986,
Mann 1988) under certain conditions, whereby solitons arise from a weakly disturbed
wave profile. A short recalculation of the distribution funchion shows that Dawsen
and Fontan’s (1989) result is valid only for normal solitons, whereas an additional
term arises for anomalous solitons. The distribution function is used to calculate the

mewar cmartrum of tha calitane The nawar enactrnm vanichee far zarn wavenumber
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and is somewhat broader than a typical one-soliton spectrum.
Finalily, the resuits are summarized and discussed in section 4.
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2. Nonlinear Schrodinger equation
The nonlinear Schrédinger equation is related to the spectral probiem (Zakharov and
Shabat 1971)
oo =~idg+qx X = —q e +iky. (3)

(%) is the two-component speciral function, and A the spectral parameter. Eliminating
x yields

wxr(wx+ihsv)§q-'=—h2¢~ieizqv- {4)
With the ansatz

p=e T (5
we obtain

2irgy = lgi"+4 ( %—) + ¢ (6)

If ¢(x=—00) =0 then ¢{x=00)-=["_ ¢.(x) dx is independent of time for all A. When
this function is written as a series in powers of {1/2iA), the coefficients are the
polynomial conserved quantities of the nonlinear Schrodinger equation (Zakharov and
Shabat 1971).

Let us ¢alculate ¢(0) for the solivon sohution

u v v 5
- il -~ +(_ L ogg= =y — )
cosh uf PJ‘111{1[2 ¢ 4 " )IH f=x-u @

of (1) and the wave profile

q:

s hx—wi}

g=goe w=Fk-2q] (8)

which is unstable for a smali perturbation with a wavenumber « <2g,, when g, ~
exp(iv/4g5—«* 1). Solving (6) for the soliton (7) we obtain

A+o/4—({u/2)tanh ué

#(&)=Ia Atofdriu/z ©)
_aAtofA-iw/2 U
éiw)_ln,\+n/4+iu/2_ Zitan 2HA+p/4) 10

For the wave profile (8) we have from (6)

. B £\ B,
¢r=1[(A+—2-)—51gn().+5} (A+§) +q[,]. (11)

The plane wave is assumed to evolve into an ensemble of solitons with the distzribution
function p(u, ©), where p{x, o) du dv is the number of solitons with amplitude u
.an interval du, and velocity » in an interval dv. The conserved function for the solitons
is additive and must be equal to the conserved function for the initial plane wave. This
condition leads to an integral equation for determining the distribution function p(u, v)
of the solitons, i.e.

qu(co;f\;u. v)pls, v; go, k) du do = é.(A; go, k)L (12}
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where ¢(0, A; u, v) and . (A; gy, k) are g-ven by (10} and (11), and L 1s the length
of some large interval contaimng the iniiial plane wave, Equation (12) is solved by

L u
plu, v} = o— —==——== 6(v — 2k) (13)
2ar 4q0— T
\Dawson and Fontin 1989} All solitons emerging from the wave profile (8) have
amplitudes u < 24, and a unique velocity v = 2k The total number of solitons becomes

Jp(u v) du dv—qoL (14)

and the total width of all solitons per unit length is

ijfp(u, v) du do=1 (15)

L
Thus only half the interval is crowded with solitons which only weakly overlap.
The power spectrum of the solitons derives from the Fourier transform of a soliton

(7):

§(K) = j g(& 1=0) e~ dg (16)

T

T Lcosh[ (K —v/2)/2u]

(17)

For randomly spaced, non-overlapping solitons with the distnbution function (13) the
power spectrum becomes

P(K)=J §(K; u, 0)p(u, v) du do (18)
o Ii =g (19)
L Jo cost{a(K —k)/dg,sin €°]

Figure 1 shows the power spectrum (19} together with the results P(K)= NGHK)
from two simple one-soliton group approximations. In the epproximation of Shen and
Nicholson {1987), the number of solitons is assumed to be N = xL/2, where « =2 gq
is the wavenumber with maximum growth rate, and the common amplitude u = g,/ V2

and velocity v=2k of all solitons are determined from the first two polynomiai
conservation laws, A better one-soliton groun approximation is obtained from the first

AT VALIANT 1dW £3 WERLLT LILma il SRV SR PIVALINRLVIREL o VAR AR A

three conservation laws which yield N = qoL/2\/— 3 solitons with amplitude u=+3 g,
and velocity » =2k This approximation scarcely differs from {19} for large wavenum-
bers, but yields a smaller power for smalfl wave numbers. The power spectrum (19)
also agrees well with the numerical solution of the nonlinear Schrédinger equation
(Shen and Nicholson 1987) for a constant profile (k =0) and large K, but still comes
out too small for small K. Thus we conclude that a constant proﬁle approximately

GeCﬁyS inio different SOI“DHS pﬂ.iS some Sl'l'iOOU'i DaLKgl'OLlIIU with smail Wd‘r‘t:lluulu!:lb
K.
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Figuare 1. Power spectrum of sohtons of the nonhnear Schrodinger equation as calculated
from the Shen-Micholson approximation { ), an improved one-soliton group approx-
mation {----), and from the sohton distribution function {(—--)

3. Derivative nonlinear Schridinger equation
The derivative nonlinear Schrodinger equation (2) is related to the spectral problem
(Kaup and Newell 1978)

o= —iAp+gvA x xe= g% p+idy (20)

which is similar to the Zakharov-Shabat spectral problem (3) for the noniinear
Schridinger equation (1). Thus the distribution function of solitons emerging from a
wave profile and the power spectrum of solitons can be calculated along the same
lines as described 1n the previous section. Elimunation of y in (20) yields

Pux— (@2 +140) ‘—f;: - xrlgle (21)
With the ansatz {5) we obtain
* 3 (bi 3 7
(Emﬁriiqi'}kw(;) +o. (22)

Solving (22) for the soliton solution of (2} {Mjglhus and Wyller 1986, Mann 1988)

u
4 T V1= Wjcosh 4bE+ W

1 5 a
Xexp[l(tBtan‘INI—-2Wtanh2b§)+§.§+¥g(z¢'12v)'r)] (23)
U g +2v
=x-v b==vu'x We—r 24
E=x—ut gva 4v N (24)
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yields
$(&)=1n LY + b7+ AM{v/4 +i[b(1 -~ W) sinh 4b¢ Fiu/8)/[(1~ W) cosh 4bs + Wit
(v/4)* + b+ x(v/4~ib)
(25)

The conserved function of A becomes
$(a0) =1 (A+u/4—-1b v[4+_ib)

Atufa+ib v/4—ib

—2(—: b +t "iéi ¥ )

=2 —tan A+o/a an ; e(Fo)m {26}

where £() =4[1+sign(v)] 15 the unit step function. For the wave profile
q=q“e|(1u:—wr) msz:qutz) {27)

| (1+5) w1 )V (15) =an]
P, =1 > sign 3 (,\+2 giA {28)

The wave profile decays into solitons only if £k > g3/2, when small perturbations with
wavenumbers « <v£2k— g3 g, grow as g, ~exp[«v(x2k—q2)gi~«’ t]. In this case

the integral equation: (i2) for the soliton distribution function is solved b

we obtain

L b db
P(u,v)=;(m5(v*vo}+s(¢vo)5(b)m(v})a_u“ (29)
where
_ 1 qo - 2
Q=0 3 ik"‘z‘” v = x2(xk —qy) (30)
k
J.ef*v)pl(v)dv:ii"(?>0 (31

If £v,>> 0 the last term in (29) vanishes, and normal solitons with limited amphtudes
(b < @) and a unique velocity v, oceur. In this case the distribution function has been
derived by Dawson and Fontin (1989) by transforming the Kaup-Newell spectral
problem (20) to the Zakharov-Shabar problem (3) However, this transformation does
not adequately take into account the first polynomial conserved gquantity

F2igp(§ =00; A = 0) =J lql* d¢ (32)

This quantity directly derives from (22) 1n the limit A » o0, whereas in the Zakharov-
Shabat case (6) we have $(£=00; A>00)=0. Since (32) is a positive continuous
function of v, a step-function term owars 1n (26) which gives nse to the second term
in the distribution function (29). Thus for 1, <0 not only anomalous solitons with
the velocity v, are formed, but also some sofitons with u”=F4s (b =0), for which
according to (26) all polynomiai conserved quantities vanish except the first one. These
solitons are called algebraic since (23) leads to

q=2\}lTﬁ—i—~f~;exp[ ( 3tan*’(u§)+§§+%r)] (33)
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in the himit -0 Algebraic solitons, however, have mfinite width and may decay into
radiation under small perturbations {(Kaup and Newell 1978). Therefore a wave profile
with +v,< 0 cannot evolve into an ensemble of stable solitons with only smatl overlap.

Let us confine ourselves to the case +v,> 0, when the soliton distribution (29} is

L db
p(u,v)=;ﬁ5(3—%)a- (34)
The total number of solitons is
L
Jp(u, v)du dvz'%— (35)
and the trtal width of all solitons per unit length becomes
le (u, 1) dudv=12 {36}
L b g £ u b
as in {13)
The Fourier transform {16) of a soliton {23) is
" u K—v/Z)
=3 *— 37
)= £ w255 1)
with
“cos{3tan (VI —2Wianh £} — K, &
fow, Ky = | ot §-Kdl g (38)
o V1 —W)coshZE+ W

The power spectrum (18) is caiculated from the Fourier transform (37) and the
distribution function (34) of the solitons. Using {24) to write

u=qfsrm W= (39)
v, vHV1+s
in terms of v, =+v/4b we obtain the power spectrum
8 [™ Winle) K—uyf2
PK) =,J T o wian(o), pg22) 4 (40)
al Jo (e} 2Q s g

where v,{¢) = £,/4Q sin o.
This result may be compared with a simple one-scliton group approximation
P(K)}= N§*(K), for which the first three conservation laws yield N = Q2L/4b solitons

with a common amplitude u (39) and velocity v = vy {30), where b must be determined
from

AL Y
—Ftan™' —==Zh
2 o 41

All soliton specira vanish for |K]— o and K -0 since

x

a = i, \
= [ glg)dg=— (w201 | q(£)dg=0 (42)
ot J_o 16 -
according to (2) and (23), and have maxima for finite [K|.
1ot ye consider the gnecial pasa L= a2 when Q= 2213 and o —0 gop0- Aler +a
i L= 2y D}Iw\alﬂl I A qo ¥Y REA AL \( q’g[& CHELAS UQ_U auvuiuuls |19

{30). The one-soliton group approximation yields b= mg3/8 from (41), i.e. N=g3L/2
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solitons with amplitude u =7 g, and velocity v =0. Then the power spectrum {40)
becomes

P(K)—i'r/:f”(ﬂ + K )d
al ), T gising) 7 43
for the soliton distribution, and
32 4K
P(K)=— fz(ﬂvi 2) {44)
7 L b7

in the one-soliton approximation As shown in figure 2, both spectra are rather sinlar.
The integration over the soliton distribution m (43), however, leads to a somewhat
shifted and broadened maximum as compared with the one-soliton approximation (44).

35

30

15

z0

t

Figure 2. Power spectrum of zero-speed solitons (£k =g¢3) of the dervatve noniinear
Schrédinger equation as calculated from a one-soliton group approximation (----), and
from the soliton distnbutton function (——}

4, Summary

We have studied the modulation instability of a wave profile for the nontinear and
derivative nonlinear Schrddinger equations. Strictly speaking, the evolution of a wave
profile depends on the detailed shape of the inmitial smali perturbation. We discuss
here, however, a typical evolution of the wave profile into an ensemble of stable solitons
under small stochastic perturbations. In this case the distribution function of the
solitons have been determined from the polynomial conserved quantities by Dawson
and Fontin (1989). We confirm their result except for go/2 < £k < g3 in the derivative
nonlinear Schrédinger case, when the first conservation law can be satisfied only with
additional algebraic solitons.
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The power spectrum of the soltons can be calculated from their distnbution
function, provided the solitons are randomiy distributed and do not overlap. This
condition is only approximately met, since half of the available space is occupied by
the solitons For the nonlinecar Schrodinger equation the spectrum qualitatively agrees
with a numerical solution of this equation (Shen and Nicholson 1987). For the derivative
nonlinear Schridinger equation, the distribution function is compatible with numerical
solut:ons involving only few solitons, but extending the numerical calculations to a
large number of solitons would appear to be difficult (Dawson and Fontan 1988, 1989).

The power spectrum of the derivative nonlinear Schradinger equation exhibits a
mmaximum for finite K Such maximum is observed in the power spectrum of the
Alfvénic turbulence upstream of the earth’s bow shiock, which 1s related 10 the denvative
nonhnear Schrodinger equation {Mdbws et @l 1987, Mann 1988, 1990).
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